Personally I find quantum computers really impressive, and they havent been given its righteous hype.
I know they won’t be something everyone has in their house but it will greatly improve some services.
Pretty sure QC is down at 0,0 right now. They haven’t gotten it to work in the way it’s been envisioned yet. The theory is there, but until something is quantifiably working, there’s basically no hype behind it.
I’d say very slightly past that. Quantum computers do work right now, but it’s the same way the Wright brothers’ first plane worked: as proof of concept and research, but not better than existing tech for solving any problems.
And it’s not that they fail to meet expectations of the designers, as far as I know they do exactly what they are built to do as well as predicted with the tech we have. Just the press is expecting more.
They work, but it’s expensive and POC stage. They’re mostly just not scaled to the level that we think we can take them to.
I personally think we’re on the slope of enlightenment - quantum computing no longer attracts as much hype as it used to, but in the background, there’s a lot of interesting developments that genuinely might be very important.
I’d agree, but that slope will be a long and hard one. And the hype cycle may have many more peaks and troughs of disillusionment, from new breakthroughs, but the researchers will still make steady progress.
If true then when did QC have its “ChatGPT” moment?
Quantum computers have no place in typical consumer technology, its practical applications are super high level STEM research and cryptography. Beyond being cool to conceptualize why would there be hype around quantum computers from the perspective of most average people who can barely figure out how to post on social media or send an email?
People thought the same of binary computers in their development phase.
Yeah, why would a farmer need a fancy calculator the size of a room? 🙄
Those 'taters ain’t gonna count themselves!
…and cryptography.
I think I’m a typical consumer, and if I’m not mistaken we use cryptography constantly (https and banking, off the top of my head). If quantum computers are important for cryptography, it’s hard to imagine “regular people” having no use.
Cryptography is most of the hype I’ve heard. It’s usually something along the lines of imagine all encryption/certificates being breakable instantly
That’s not the case, quantum computing can only break specific types of cryptography.
Hype ≠ Reality
Ahh yes, I misread your comment
Imagine quantum PCs get usable and we don’t update users cryptography 😂 you could as well communicate in plain text in that case
Specifically breaking prime number based cryptography.
Your use of Cryptography is probably roughly on the level of “Having a strong password.”
The application of quantum computers will largely in in BREAKING security. You’re not going to have a quantum-security module in your phone or home computer.
Not necessarily we could get better more complex security at boot with a qbit TPM chip. Every time you log into a secure boot environment you are solving a hash which is in the wheelhouse of quantum compute.
Quantum Computing is still climbing the slope from TT to the Peak of Inflated Expectations. There is still little to no major hype, as its still in “R&D/testing” it is slow, it is expensive (Very) limited due to all the surrounding tech required to make it work like cooling, containment etc…
Compare this to AI.
AI is at and heading down from the Peak towards the Trough of Disillusionment. It was easy (relatively) to implement, easy to evolve as how nVidia did, simply throw more silicon at it. The Hype was easy to generate because even while totally misinformed, media and other people out there thought they could easily sell it. Even though most of what they claimed was turd, it sounded amazing and a game changer even in the early stages, and businesses lapped it up. Now they are feeling the pain, and seeing that there are still major hurdles to get past.
considering that no one who isn’t involved in the creation of them is talking about quantum computing in regards to quarterly profits or posting about it on LinkedIn trying to score a lead, it may be as far left on the chart as possible.
AI is way different. It’s more like a series of hills where Sysiphus is pushing the boulder up to the peak, only to see another higher peak as the boulder rolls down the slope of disillusionment.
The thing is that quite a few things initially called AI have climbed that hype curve, rolled down into disillusionment, and quite a few have climbed back to a plateau of increased productivity. Each time we realize that’s either not AI or only a step toward AI. We’ve gotten a lot of useful functionality but the actual progress seems to be mainly clarifying what intelligence is or is not
The kind of LLM that caused this hype with GPT3 is in R&D since the 60’s. I belive we’re in the 70’s of Quantum Coputing. When It’ll be measured, it’d be just as easy and relatively cheep to produce and advance as AI today
Pretty much on the blue line. They cost a lot of money for being barely functional, and it’s not clear whether they’ll ever be anything more
The answer for that exists as a superposition of multiple possibilities but as soon as somebody manages to read it it will decohere into just the one.
Amazing computational speedups if you regularly use any of these incredibly specific algorithms. Otherwise useless.
Quantum as a service may exist as a business.
Uh… one of those algorithms in your list is literally for speeding up linear algebra. Do you think just because it sounds technical it’s “businessy”? All modern technology is technical, that’s what technology is. It would be like someone saying, “GPUs would be useless to regular people because all they mainly do is speed up matrix multiplication. Who cares about that except for businesses?” Many of these algorithms here offer potential speedup for linear algebra operations. That is the basis of both graphics and AI. One of those algorithms is even for machine learning in that list. There are various algorithms for potentially speeding up matrix multiplication in the linear. It’s huge for regular consumers… assuming the technology could ever progress to come to regular consumers.
literally for speeding up linear algebra
For a sparse matrix where you don’t need the values of the solution vector.
I.e. a very specific use case.
Quantum computers will be called from libraries that apply very specific subroutines for very specific problems.
Consumers may occasionally call a quantum subroutine in a cloud environment. I very much doubt we will have a quantum chip in our phone.
Yes, but, quantum TPM or TPU chips would allow for far more complex encryption. So you’d likely have a portiion of the SOC with a quantum bus or some other function.
However you’re correct that it’d take a seachange in computing for a qbit based OS
Strong, post quantum encryption doesn’t require quantum computers. It uses different mathematical objects (e.g. matrices)
True. However there is still a usecase. You could sign a cert for uefi much like a payment would. Useful for distributed compute.
Why are you isolating a single algorithm? There are tons of them that speed up various aspects of linear algebra and not just that single one, and many improvements to these algorithms since they were first introduced, there are a lot more in the literature than just in the popular consciousness.
The point is not that it will speed up every major calculation, but these are calculations that could be made use of, and there will likely even be more similar algorithms discovered if quantum computers are more commonplace. There is a whole branch of research called quantum machine learning that is centered solely around figuring out how to make use of these algorithms to provide performance benefits for machine learning algorithms.
If they would offer speed benefits, then why wouldn’t you want to have the chip that offers the speed benefits in your phone? Of course, in practical terms, we likely will not have this due to the difficulty and expense of quantum chips, and the fact they currently have to be cooled below to near zero degrees Kelvin. But your argument suggests that if somehow consumers could have access to technology in their phone that would offer performance benefits to their software that they wouldn’t want it.
That just makes no sense to me. The issue is not that quantum computers could not offer performance benefits in theory. The issue is more about whether or not the theory can be implemented in practical engineering terms, as well as a cost-to-performance ratio. The engineering would have to be good enough to both bring the price down and make the performance benefits high enough to make it worth it.
It is the same with GPUs. A GPU can only speed up certain problems, and it would thus be even more inefficient to try and force every calculation through the GPU. You have libraries that only call the GPU when it is needed for certain calculations. This ends up offering major performance benefits and if the price of the GPU is low enough and the performance benefits high enough to match what the consumers want, they will buy it. We also have separate AI chips now as well which are making their way into some phones. While there’s no reason at the current moment to believe we will see quantum technology shrunk small and cheap enough to show up in consumer phones, if hypothetically that was the case, I don’t see why consumers wouldn’t want it.
I am sure clever software developers would figure out how to make use of them if they were available like that. They likely will not be available like that any time in the near future, if ever, but assuming they are, there would probably be a lot of interesting use cases for them that have not even been thought of yet. They will likely remain something largely used by businesses but in my view it will be mostly because of practical concerns. The benefits of them won’t outweigh the cost anytime soon.
Why are you isolating a single algorithm?
To show that quantum computing only helps with very specific parts of very specific algorithms.
A QC is not a CPU, it’s not a GPU, it’s closer to a superpowered FPU.
If they would offer speed benefits, then why wouldn’t you want to have the chip that offers the speed benefits in your phone?
if somehow consumers could have access to technology in their phone that would offer performance benefits to their software that they wouldn’t want it.
Because the same functionality would be available as a cloud service (like AI now). This reduces costs and the need to carry liquid nitrogen around.
The issue is not that quantum computers could not offer performance benefits in theory.
It is this. QC only enhances some very specific tasks.
It is the same with GPUs. A GPU can only speed up certain problems. You have libraries that only call the GPU when it is needed for certain calculations.
Yes, exactly my point. QC is a less flexible GPU.
I don’t see why consumers wouldn’t want it.
Because they would need to use the specific quantum enhanced algorithms frequently enough to pay to have local, always on access.
They will likely remain something largely used by businesses but in my view it will be mostly because of practical concerns. The benefits of them won’t outweigh the cost anytime soon.
Agree. Unless some magic tech, like room temperature superconductors, turns up there will only be quantum as a service supplied for some very specific business needs.
Because the same functionality would be available as a cloud service (like AI now). This reduces costs and the need to carry liquid nitrogen around.
Okay, you are just misrepresenting my argument at this point.
Actually I think we are mostly agreeing.
The difference is that you think that the technology will quickly be made cheap and portable enough for mass consumption and I think it will remain, for quite some time, niche and expensive, like high end, precision industrial equipment.
I’m so dreadfully sorry. I cannot help myself. Please forgive me.
It’s “zero kelvins” not “zero degrees Kelvin.”
You don’t have to be sorry, that was stupid of me to write that.
We’re in the “grifters collecting donations” phase for the foreseeable future.
I think this graph doesn’t have to move left to right, it can also move right to left. On several occasions quantum computing started to move up the “tech trigger” slope, but without any functional applications for the current technology the point slid back down to the left again.
I think the graph needs at least one more demarcated region. After “tech trigger” there needs to be “real world applications”. Without real world applications you can never progress past the tech trigger phase.
In chemistry this is the equivalent of Energy of Activation. If a reaction can’t get over the big first step, then it can’t proceed on to any secondary steps
Approaching the point of disillusionment.
They started to work, but hardly anyone cares. They are still far from being good, or affordable.
Trough of disillusionment
You think we’ve made it that far?
I think we’re still headed up the peak of inflated expectations. Quantum computing may be better at a category of problems that do a significant amount of math on a small amount of data. Traditional computing is likely to stay better at anything that requires a large amount of input data, or a large amount of output data, or only uses a small amount of math to transform the inputs to the outputs.
Anything you do with SQL, spreadsheets, images, music and video, and basically anything involved in rendering is pretty much untouchable. On the other hand, a limited number of use cases (cryptography, cryptocurrencies, maybe even AI/ML) might be much cheaper and fasrer with a quantum computer. There are possible military applications, so countries with big militaries are spending until they know whether that’s a weakness or not. If it turns out they can’t do any of the things that looked possible from the expectation peak, the whole industry will fizzle.
As for my opinion, comparing QC to early silicon computers is very misleading, because early computers improved by becoming way smaller. QC is far closer to the minimum possible size already, so there won’t be a comparable, “then grow the circuit size by a factor of ten million” step. I think they probably can’t do anything world shaking.
I think AI is falling into disillusionment and Quantum Computers feel at least 10 years behind.
AI is falling into disillusionment for like the 10th time now. We just keep redefining what AI is to mean “whatever is slightly out of reach for modern computers”.
Hahaha, I kept saying this to myself while going through this thread. I mean there is a whole wiki page on the concept of AI winters because it’s such a common occurrence - https://en.m.wikipedia.org/wiki/AI_winter
Schrödinger’s tech. It’s both real and flimflam at the same time.
You’ve been able to buy a quantum computer for years, so trough of disillusionment.
although DARPA has them, so probably making our way through the trough of disillusionment.
DARPA feasibility studies:
https://www.theregister.com/2024/06/24/darpa_quantum_computer_benchmarking_papers/
available quantum computers:
https://quantumzeitgeist.com/how-to-buy-a-quantum-computer/
You’re not going to hear a lot about them the same way people didn’t hear about personal computers back in the '60s, but there are and have been many companies consistently working on improving the accuracy and power of quantum computers.
regular computers were around for decades before being successfully developed into personal machines with commercial utility, quantum computers are kind of in that zone roght mow, big room sized things that have a couple cubits.
but they are real and available, and the field is constantly in development
It’s debatable if D-Wave is actually a quantum computer at least in the sense most people use the term. There’s a lot of unanswered questions still on exactly how to use and design a quantum computer and we’re not likely to get those answers until we can reliably produce and run systems with at least 8 qubits. Maybe DARPA and the military/CIA has such systems, but I don’t think anyone else does.
Quantum computers are still mostly theoretical. We have some of the building blocks of one, but there’s still a few critical pieces missing. Quantum computers are in about the same place as fusion reactors are. Theoretically possible but not currently producible in a form that’s useful without a few more technological breakthroughs.
If the computers are using qubits instead of bits as processing power, then they’re a quantum computer, as far as i understand.
I think IBM’s most recent chip has a thousand qubits hang on-
IBMs quantum computer has 1121 cubits in their heron chip now in the quantum computer they’re producing now and are working toward 100,000 qubits per processor in the next decade.
https://www.forbes.com/sites/technology/article/top-quantum-computing-companies/
From your article,
What everyone should know, however, is that quantum computing is not yet a practical reality. No company has developed a device that can beat classical supercomputers at anything more than obscure research problems that have no real use.
Until quantum computing has its Alan Turing moment it will remain a curiosity. The power of qubits needs to be yoked as a beast of burden for computation and actual useful problem solving the way that digital computing was with the Turing machine. It’s not a certainty that this will ever happen.
Sometimes I think that believers in quantum computing’s superiority to digital computing are as silly as those who think we’ve almost proven P=NP. But who knows, both might be valid.
DARPA disagrees and the US has doubled billions of dollars of investment in the last few years testing available quantum computers.
ibm is increasing quantum processing power just like they do with regular computers.
Declaring that quantum computers is not yet a practical reality despite them being real and functioning, progressing and in use is akin to dismissing the wright brothers after their first successful flight.
if people doubted the wright brothers before they built and flew their plane?
understandable.
but doubting them after kitty hawk is popular willful ignorance, or an aversion to logical imagination.
It’s the same common perception about new technology until said tech becomes less-new and widely available, at which point everyone swears they saw it coming a mile away and it’s the only way things could have happened.
Electric cars is another great example, people have been moaning for 20 years that they are impractical and their batteries are difficult to manufacture and their capacity just isn’t up to snuff so they’ll never really take off like gasoline cars, and now everyone with any understanding of the auto industry has pretty much accepted the inevitability of EV dominance.
Okay, I was being somewhat flippant. I don’t discount there seems to be progress in some areas but slow and in low-visibility ways. I could even believe much more powerful quantum computers exist in state facilities around the world. Have they been shown to be useful though or there some bottleneck that prevents them from outcompeting digital computers?
An additional concern of mine is what they are useful for is in rapidly breaking vital digital algorithms like elliptical curve cryptography, and can’t be allowed in public hands for that reason. Someone elsewhere said there were computers with 1100 qubits, why is it taking so long to exploit these machines to do useful work? Or am I mistaken and there is evidence, I would love to see it.
Would a savvy investor put their money in quantum computing now, was the Wright Company a good buy when it first started? This actually has me on a deep dive about historical stock market graphs…
ooh good deep dive.
investment in quantum computing by the US government has doubled in less than 4 years, I know China is throwing huge amounts of money at it also, but you won’t see large public investment until commercially available products become widespread, which is not to say that you can’t invest in qcomputing if you want to.
let me know what you find with air travel investment 120 years ago, I’m interested.
update: looks like vanderbilt and morgan invested 1 million dollars in the wright brothers company 6 years after kitty hawk, which would still be very, very early days for investing in flight.
here’s an article sunnarizing several quotes from darpa after experimenting with eight of the currently available quantum computers:
https://www.theregister.com/2024/06/24/darpa_quantum_computer_benchmarking_papers/
The results are mixed depending on what was measured, but it’s important to note that DARPA didn’t say quantum computing isn’t real or isn’t practical, just current quantum computers aren’t ready to consistently tackle every problem, which is a lot like saying a 1995 desktop can’t run Witcher 3.
and for fun, that’s obviously the information DARPA has publicly shared, anything quantum computing could be positively applied to with significant efficacy would be a matter of national security at this point.
while not as relevant as the actual results DARPA is releasing, it’s important to keep in mind that satellite phones were around '62 but weren’t commercially available for at least 30 years.
Three decades of practical development and use cases before that tech becomes mainstream.
Good points, I’m reevaluating my perspective on quantum computing.
From the article you posted, it says that “certain chemistry, quantum materials, and materials science applications” are suitable for quantum computing but that “accelerating incompressible computational fluid dynamics” aren’t suitable with current understanding of how the algorithms could work.
My takeaway as someone with a couple years of CS education from years ago is that the qcomputers are good at gradient descent/simulated annealing or something like that but that advantage disappears with more complex problems. Also that we’ll need a few more orders of magnitude qubits to make the output “interesting.” Still though, helpful to see that something worthwhile is stirring under all that research , I appreciate the insight!
looks like vanderbilt and morgan invested 1 million dollars in the wright brothers company 6 years after kitty hawk, which would still be very, very early days for investing in flight.
I saw on a website dedicated to the Wright brothers, that but I was curious if there was something recognizable as a stock price listing as a publicly traded company. Larger investors like that might jump in before smaller investors started approaching it.
I posted a question about it on the largest stocks related communities I could find on Lemmy, maybe someone has expertise in that kind of thing. I’ll turn it over to AskLemmy if nobody shows up on the smaller forum.