[T]he report’s executive summary certainly gets to the heart of their findings.
“The rhetoric from small modular reactor (SMR) advocates is loud and persistent: This time will be different because the cost overruns and schedule delays that have plagued large reactor construction projects will not be repeated with the new designs,” says the report. “But the few SMRs that have been built (or have been started) paint a different picture – one that looks startlingly similar to the past. Significant construction delays are still the norm and costs have continued to climb.”
Why can’t we switch to thorium and molten salt instead? Much cleaner, much safer, same idea.
Because it is actually not that simple, especially on the “cleaner” and “safer” parts.
deleted by creator
Wikipedia has a good discussion, if you don’t need technical detail. They’re fairly optimistic, but do note difficulties. It actually looks more positive than I expected, with the number of demonstration reactors in the last decade or so. Note: “demonstration”. I don’t think there’s anything actually blocking use of Thorium, but some unresolved issues for commercialization, plus it’s not clear the actual results are better, or that nuclear is any longer a good place to invest. It’s more of: at this point, why would you go down that road?
https://en.wikipedia.org/wiki/Thorium-based_nuclear_power
Sorry, can’t find the stuff I read about it a while back when I was interested about it, or was it a YouTube video?
Anyway, here is what I remember: having the radioactive fuel as a liquid makes it easier to leak, and once that’s happened, the environment damage will spread faster to ground water. Also sodium salt is liquid at high temperature, at which it will spontaneously catch fire in contact with oxygen (air), so any leak will cause a catastrophic fire, and this is what caused the demise of the French prototype “Projet Phénix” in the 70s.
Theoretically the main advantage of the thorium is precisely because its safer and cleaner. When removed from its neutron source thorium quickly ceases fission and decay.
The technology doesn’t exist in a commercially viable form. That’s why.
I didn’t think that was ready for commercialize yet. You have all the disadvantages of nuclear, but need additional development costs, need to implement a supply chain, then build out a new technology that is less efficient than existing nuclear, has unclear service life, may be supplanted by fusion or renewables, and you can still use it to make bomb material. Seems like a poor idea and a waste of money.
From India’s perspective, they’d get to lead in a new technology, where they have huge reserves of fuel, and cheap labor to scale up to a billion energy-starved citizens …. And if it helped increase their nuclear weapons stock in the face of tight controls on plutonium, so much the better
What makes you think it’s less efficient. Normally high temperature reactor technology is more efficient not less.
I’m not claiming to be any more knowledgeable than what I read here, but Wikipedia says
https://en.wikipedia.org/wiki/Thorium-based_nuclear_power
I didn’t say anything about thorium. Not all molten salt reactors are thorium though. In fact not all high temperature reactors are molten salt either. People keep mixing these technologies up.