I wish I was taught about the usefulness of maths growing up. When I did A-level with differentition and integration I quickly forgot as I didn’t see a point in it.
At about 35 someone mentioned diff and int are useful for loan repayment calculations, savings and mortgages.
I do some 8-bit coding and only last month realized logarithms allow dirt-cheap multiplication and division. I had never used them in a context where floating-point wasn’t readily available. Took a function I’d painstakingly optimized in 6502 assembly, requiring only two hundred cycles, and instantly replaced it with sixty cycles of sloppy C. More assembly got it down to about thirty-five… and more accurate than before. All from doing exp[ log[ n ] - log[ d ] ].
Still pull my hair out doing anything with tangents. I understand it conceptually. I know how it goddamn well ought to work. But it is somehow the fiddliest goddamn thing to handle, despite being basically friggin’ linear for the first forty-five degrees. Which is why my code also now cheats by doing a (dirt cheap!) division and pretending that’s an octant angle.
I wish I was taught about the usefulness of maths growing up. When I did A-level with differentition and integration I quickly forgot as I didn’t see a point in it.
At about 35 someone mentioned diff and int are useful for loan repayment calculations, savings and mortgages.
Blew my fucking mind cos those are useful!
That’s one of the big problems with maths teaching in the UK, it’s almost actively hostile to giving any sort of context.
When a subject is reduced to a chore done for its own sake it’s no wonder most students don’t develop a passion or interest in it.
I do some 8-bit coding and only last month realized logarithms allow dirt-cheap multiplication and division. I had never used them in a context where floating-point wasn’t readily available. Took a function I’d painstakingly optimized in 6502 assembly, requiring only two hundred cycles, and instantly replaced it with sixty cycles of sloppy C. More assembly got it down to about thirty-five… and more accurate than before. All from doing exp[ log[ n ] - log[ d ] ].
Still pull my hair out doing anything with tangents. I understand it conceptually. I know how it goddamn well ought to work. But it is somehow the fiddliest goddamn thing to handle, despite being basically friggin’ linear for the first forty-five degrees. Which is why my code also now cheats by doing a (dirt cheap!) division and pretending that’s an octant angle.