Yeah, I think massive chemical batteries for storing excess electricity to facilitate a contrived green energy market is a bad idea.
Yeah, I think massive chemical batteries for storing excess electricity to facilitate a contrived green energy market is a bad idea.
Find an engineer or an engineering channel to better understand the grid. Energy generation - clean or otherwise - has to be adjusted in realtime… further: the above statement doesn’t clearly understand or solve for over generation vs under generation. There’s a fix: a reservoir. In other words: storage. This (storage) is present everywhere from the grid to almost literally every circuit board.
You’re picking a fight with batteries/energy storage - then making an argument about something unrelated. “Storing cooked beef sure is hard” is not properly solved with “the store stocking more beef.” They are tangentially related… but not the same thing.
edit: clarity / punctuation
Filling a reservoir during the day to run a steel mill overnight is a complete waste of a reservoir: move the steel mill to daytime hours and you don’t need the reservoir.
And yet, we are doing this now: We are driving consumption to overnight hours that can’t possibly be met by solar. We are offering cheap “off peak” power, and incentivizing overnight consumption.
We do have good reason for it: we need that excess overnight demand to improve the efficiency of our base load generation. But, those same incentives are killing solar/wind efficiency and artificially increasing the need for storage.
Yes, we need storage to match the imbalance between generation and demand. But it is far more important that we minimize that imbalance first.
Shifting demand to time of production (demand shaping) is much more efficient than shifting production to time of demand (storage).
OP’s position is rather ludicrous for a number of reasons, but they are not wrong on this particular point.
This is just factually ridiculous.
This isn’t a logical comparison. Here’s an apples to apples: It’s the rainy season - my plants have water … I take excess water and keep it in a rain barrel. An unexpected dry spell occurs: My plants have water.
We’ll return to this in a moment.
Being night I’d imagine that’s a tough fight for solar… I’ll give you that. 🙄
No.
Storage - or a buffer if you will - is simply a requirement of many systems. Electricity is no different. Renewables benefit substantially by having it and would be horribly inefficient without it.
Demand shaping when we’re taking about the grid is largely the result of seasons, the availability of light, and our day to day actions. We turn lights on at night, the heat on when we are cold, and the air on when we are hot. We cook meals before and after work. Demand shaping on the scale that is being suggested requires a positively insane amount of change and has an infinitesimally small chance of occuring.
Now: we have solar during the day and turbines for when it’s windy. This is your production. You cannot shift it. It is raining - my plants are getting water. How then, do you water your plants when it is dry? This answers itself.
Op believes that energy storage shouldn’t be necessary. At all. They have clearly stated elsewhere that their opinion is not based on research and it shows. A grid requires a buffer - or a series of fast acting production which effectively simulates one. Solar / wind without that buffer would be nearly unusuable.
Op is misguided at best and while technically not completely wrong: for them to be right we’d need to live in some utopia with vastly different technologies that we have presently. I like sci-fi too… but I’m not going to lobby congress to get rid of planes in favor of teleporters.
Yes, that is one of the ludicrous arguments that I acknowledged OP is making.
Agreed. As I said: “Yes, we need storage to match the imbalance between generation and demand. But it is far more important that we minimize that imbalance first.”
No. You are describing one type of demand shaping, but it is not the only one, and it is not the type I am referring to. “Time of use” plans are another type that consumers are more aware of. I’m referring to the industrial version of TOU rate plans.
I am saying that these varieties of demand shaping are currently setup to support traditional nuclear/coal baseload generation, rather than solar/wind. They are currently designed to increase the minimum, overnight load on the grid. They are currently used lower peak demand, and raise the trough.
Those TOU plans need to shift to driving consumption to daylight hours: To maximize the amount of power consumed as it is generated, and thus minimizing the need for storage.
Only if we are trying to get every consumer to participate. We don’t actually need to do that.
Dude. We are already doing exactly that. We have grid storage facilities being charged by solar power during the day and discharging overnight. We also have steel mills and aluminum smelters paying lower rates to operate overnight rather than during the day, to meet the needs of baseload generators.
But ultimately, the solar, nuclear/coal, storage, and steel plants are all on the same grid. So we are, effectively, doing exactly what I said: running the steel mills with stored solar power. Yes, there are legitimate reasons for doing it this way, but those reasons are ultimately based on legacy issues.
To continue the shift from traditional coal/nuclear baseload generation to solar/wind, we either need enough storage to run the steel mills overnight, or we need to shift the mills to daytime operation.
Again: Storage is important, yes. But, demand shifting is far more important.
I’m going to preface this response with: I will be consolidating / paraphrasing your responses I quote - I do not intend to misrepresent anything you said - it will simply be to manage post length. I have read your post in its entirety and am responding as such.
Consider that OPs statement used a LOT of the same language and recommendations but was horribly off base. I was re-asserting the fault in his views to remind you that he was - without question - completely wrong. This doesn’t mean that you are. It does mean that you shouldn’t give him a pass because he expressed interest in a solution you support. If anything this is a teaching moment where you confirm that he, is in fact wrong, but this is how x works.
I’m glad we see eye to eye on its presence in a working solution. Please understand that this has largely been the contentious point throughout the thread so this is where I focused when you asserted that OP wasn’t wrong in (even a particular) capacity. It needs to be clear so information isn’t misrepresented.
This is my view coupled with some basic knowledge of how things work - with a healthy dose of extrapolation: that is to say this response is opinion and not an area of expertise for me… but is where things logically ended up with this particular subject.
I understand the focus you are taking with demand shaping - but from my perspective I do not think the net result will be as great as you believe it to be… but for tangentially related reasons. Before I get into the meat of that - yes, I wholeheartedly agree that optimizations in any form are a good thing. Many gains in the field of energy generation and storage are measured in small steps so ~2-5% still matters.
With that said:
Generally speaking price/kWh is determined by usage overall at that time… Now factor in that these industrial factories you are moving are contributing to the current price (at their current time slot) - which is lower than where you want to move them.
A couple things to consider:
Assuming their usage is significant enough to move the needle: (at scale) most factories would then have their workers on a standard workday as well. Remember that 2nd/3rd shift workers are probably sleeping through at least 1 of the “peak usage” periods which in its own way is also offsetting demand. This in all probability would be a dampening effect on the shift that would be expected from the primary “move.”
Assuming no major effect from the workers changing schedule (which based on my understanding would not be the case) - and indeed a sizable move from the factories proper… you’d still need the factories to be willing to take on the increased energy costs associated with moving into the more expensive energy window. While this is the “ideal” you are looking for: This feels… unlikely. (see utopia comment)
I believe we both agree that storage is a necessary component of most solar / wind installations. Presently (to my knowledge) most battery systems are used primarily as a “smoothing” buffer for incoming energy as neither sun nor wind are constant resulting in variable returns. Secondarily, they function as a substitute during extended periods on non-generation (nighttime.) Now these battery systems are going to exist regardless what usage is occurring when - they exist to make the solar/wind systems reliable and efficient.
Lets factor in our constants:
Energy generation: The sunlight isn’t changing nor is the solar installation’s size. Daytime generation + nighttime generation should not change functionally at all here as (to my knowledge.)
Daily energy: this should not change - the factories continue to use “roughly” the same energy as before.
Functionally this solution isn’t changing how much energy is in the system, nor is it changing energy consumed. It may be changing how much the batteries are cycling… which, sure, would be an environmental impact… but not production. To resurrect my rain example: we haven’t changed the barrel size, the rain amount, or the plants that require said water. We’re just changing when we water them.
(This is loosely referenced knowledge - but it passes the sniff test:)
Making the change you and OP are referring to works in a bubble but not in the way you are envisioning it. Presently at least. A grid, as you observed, is a series of power stations working together to provide the sum of energy required. The grid, as I asserted earlier, is very exacting in its requirements to function (pressure system example.) It stands to reason that the intermittent producer be locked to a rate they can “safely” achieve based on averages and their storage capacities. They will not be the first pick nor the lions share of “reactive energy” provided. We can’t produce more “sunlight” without robbing Peter to pay Paul - a battery dump during the day to assist with reactive energy results in less energy to provide at night. This system is optimized and sized for a set “average” generation during the day with an expected offload at night. (rain example again)
So who picks up the slack for the move to prime hours? You provided that answer:
So yes, the shaping could move demand into the peak hours - and then would re-apply stress to the exact producers that the mills were moved originally to relieve. This feels like a non-starter to me: Task failed successfully …at least in our current conditions - which leads us to:
Absolutely using solar to offset steel mill energy consumption is an outstanding concept - but it requires build outs, regulation changes, and a lot of different parties to agree to make that change. I may have been hyperbolic in my utopia / teleporter examples but the point is: those changes are neither quick nor easy and may as well be the stuff of science fiction for now. I agree its important to phase out legacy producers like coal / oil - I firmly believe nuclear is here to stay until it is replaced by the next “big” producer. Will renewables eventually be our primary source of power? We see examples of it working - so sure. Its possible. But renewables will continue to be a package deal with storage. The technology may change but the storage requirement will remain constant. (This part is, again, aimed at op- not you.)
Final thoughts: I spent far longer on this than I anticipated - but I think your post warranted it. You provided facts to the best of your knowledge and clearly were compelled to state the case for something you believe in. Ultimately - I wouldn’t say we disagree: I think we are both looking at different time horizons. Currently, in the here and now, your solution isn’t readily available nor easily achieved. That said- it is clear that at least some people are seeking what you presented as an eventuality. ~10 years from now it may well be reality. I still believe that you shouldn’t have defended OP’s position as you did. A partial affirmation likely will be received as “Oh, see! I was right- mostly…” and they will carry on; learning nothing.
Understood, and agreed. Not giving him a pass at all.
I do not accept the premise that the “solar installation’s size” is not changing. Quite the contrary, I am calling for it it increase. A lot. (All of this applies to wind as well, but for simplicity, I’m going to focus on solar alone. We need more wind, and more wave, tidal, etc.)
I do not accept the premise that the new window is more expensive. We are already regularly experiencing negative rates in these windows because demand is not high enough to match existing production, let alone the increased production I am calling for. These negative rates are extraordinarily bad for continued solar development; they cannot be allowed to continue. That means we either slow/stop expanding solar, or we drive existing and/or new demand to daylight hours.
Slowing solar rollout is not at all an option, so we are left with some variety of demand shaping.
The missing component is elastic demand. Bitcoin has some serious negative connotations, and I am not recommending this as a specific example of what we should be adding. Rather, I ask you consider only the nature of the load: they are turning electricity into money, and they can only do that profitably at certain price points.
Consider massive data centers on highly variable rate plans. They fall well below the rates that regular consumers would pay when there is a surplus. But, they also rise far above market rates when there is a shortage. A Bitcoin miner operating on such a plan would shut down when their instantaneous costs rise above their expected returns.
Consider a data center with its own solar facility supplementing the power they draw from the grid. What will this facility do when the instantaneous price of power exceeds their rate of return? Will the continue to draw power at a loss? Will they reduce their demand and continue operating solely on their own solar generation? Or, will they shut down their miners entirely, and use their solar to backfeed the grid at that high price point?
Another possible flexible load is desalination: don’t try to store the power; use the power when it is available, and store the desalinated water instead.
Hydrogen electrolysis is another option. It’s not particularly efficient, but when you can get the power at a heavily discounted rate, the effective economic efficiency may be high enough to justify it. Don’t try to store the power; store the hydrogen instead.
Fischer-Tropsch hydrocarbon synfuel production is yet another option: don’t try to store the power; store the generated fuel.
AI is another (controversial) option. Perform the energy-intensive training operations when power is cheap, and suspend processing when rates rise.
All of these operations may need to be under the control of the grid provider, to provide sufficient incentive for them to be shut down when production falls unexpectedly.
https://www.youtube.com/watch?v=7G4ipM2qjfw
OP is… trying his best, I guess. For now lipo is the best solution. Actually multiple things are the solution. Pumped water has a delay that needs to be covered by something else. Flywheels have mechanical chalenges. Molten salt also has problems. Etc. They all compliment each other. IMO best single solution would be nuclear. Salt will be better then lithium, but in some years.
When batteries (ahcually accumulators, but whatever) are done properly, the fires should not go beyond one cell, if at all.
PS Gravity, except pumped water, is hilariously bad.
I commend your faith in … ehm… the human spirit we’ll say.
Keenly aware. I got a good laugh out of it when I saw it mentioned.
Practical Engineering is great. He does a fantastic job of explaining things simply and frequently provides models to demonstrate things.
100% on the combination of things statement. Many different storage mediums have different advantages and disadvantages. The right tool for the right job. Flawed though it is I always loved reading about molten salt… It just seemed like such a metal way to store energy. 😂
Realistically - I don’t mind people being incorrect or even just leaning into their particular beliefs or preferences… but OP emphatically stating incorrect information and then arguing as people corrected him was irritating.