Scientists develop game-changing ‘glass brick’ that could revolutionize construction: ‘The highest insulating performance’::The team of scientists developed an aerogel glass brick, which is a translucent and thermally insulating material.
Scientists develop game-changing ‘glass brick’ that could revolutionize construction: ‘The highest insulating performance’::The team of scientists developed an aerogel glass brick, which is a translucent and thermally insulating material.
I wish the article would have mentioned an R-value or at least something to describe the actual efficiency of its insulating ability.
Any time an article references another, immediately jump ship and read the original.
https://www.sci.news/othersciences/materials/aerogel-glass-brick-11848.html
Or include a picture of the actual material instead of a stock photo of a glass brick stairwell…
The source article has this “visualisation”:
From that I’d assume it’s not suitable for windows, but it is suitable for taking advantage of natural lighting (not to mention it just looks pretty cool… though I’m not sure about the rest of the architecture in that image).
It’s also good at broadcasting to your neighborhood whether or not you’re home.
In these times?
You install smart lighting to mimic human presence.
Burglars put up wireless cameras to be sure You left.
You mean like how windows do now?
A quick search yields an R value of 9.6-20 per inch for already available aerogel insulating materials. So a standard exterior wall would have a 3.5"(2x4) or 5.5" (2x6) cavity giving R values of 33.6 and 52.8 respectively at the lower efficiency and cheaper options. That is better performance than pretty much any other option, but the cost is like 10-30 times that of other options.
If they are containing the aerogel granules in glass, which seems to be the case, the thermal bridging would be an issue for efficiency. A solid glass block has an R value of 1.15… A triple glazed window has an R value of 7-8.
The better option than glass block would be filling the cavity of a double glazed window with aerogel granules, which would cut down on thermal bridging to the just the sash/casing and would be more economically viable for production.
Are you just talking construction costs? How about if you consider the lifetime energy consumption of a building over, I dunno, 50 years? And using zero emission heating, since in 50 years we hopefully are not using fossil fuels for that.
Obviously that’s going to vary dramatically depending on the indoor/outdoor temperature delta and future renewable energy costs, so there are too many variables to come up with a number easily, but I could see these bricks being very cheap if you factor int he total cost over the life of the building.
Glass works ok for small windows - but large glass panels are fragile and expensive.
Isn’t aeorogel really expensive to begin with? I mean we have tech like Ytong and they are still using bricks in buildings. Why? Ytong seems expensive to uneducated who have no clue about TCO and engineering.
Aerogel is insanely expensive. It has an R-value of 10 per inch and the handy property of costing about $1 per R-value per square foot. So a piece of aerogel 1" thick by 4’ x 8’ would cost $320; the equivalent piece of 2" thick XPS foam board (also R-10) costs about $50 these days. So with aerogel you’re paying a 500% to 600% premium to have your insulation be half as thick as XPS would be - and to essentially have no compression resistance at all (vs. the 20+ PSI of foam board).
Me, I’m noticing the distinct lack of any information on cost or cost-effectiveness.