I guess one reason why no one is paying attention to it is because is the Wi-Fi speed usually the limiting factor? In my case I’ve rarely ever maxed out my Wi-Fi 6 speeds. Typically the host or the network that I’m on that is the limiting factor.
Although I’m also in the US so I know where not know for having the fastest internet in the world. Maybe in other areas of the world WiFi 7 might be more useful.
I’m more excited about reducing congestion when more of my neighbors upgrade to 6, so that BSS coloring and other wifi 6/7 features can enable more efficient use of the spectrum. Before wifi 6 most of the upgrades were just increasing data rates, but really lacking in improvements to spectral use efficiency (like the resource unit allocation in OFDMA which splits channels into sub carriers and centrally plans assignment to multiple client devices for simultaneous use which results in much less wasted airtime compared to each device yelling and listening while waiting to see if they can have exclusive access to the whole channel which wastes time) and interference management (like preamble puncturing which allows partial use of a channel when only a portion has interference). In a crowded environment like an apartment building wifi 6 should help a lot in reducing channel utilization.
I guess one reason why no one is paying attention to it is because is the Wi-Fi speed usually the limiting factor?
On a LAN? Pretty easily if you have a gigabit or greater network. Wi-Fi 6 can do close to gigabit but not consistently and needs to be close to an AP, and it’s unlikely a bunch of devices using it at the same time will be able to do maintain that peak. Maybe 6E, although I don’t have any devices myself that support it.
And WAN speeds of gigabit and greater have become more common, too.
And this ignores the improvements in latency with Wi-Fi 7, which is definitely an issue with traditional Wi-Fi.
Ok, I know why we changed the version naming scheme: a, b, g, n, ac, ax… It was a nightmare, just awful.
But I’ll bet it does still have a IEEE designation, so how does 6 or 7 map to the previous scheme? Also, what’s new, what are the impressive current speeds and features?
I guess one reason why no one is paying attention to it is because is the Wi-Fi speed usually the limiting factor? In my case I’ve rarely ever maxed out my Wi-Fi 6 speeds. Typically the host or the network that I’m on that is the limiting factor.
Although I’m also in the US so I know where not know for having the fastest internet in the world. Maybe in other areas of the world WiFi 7 might be more useful.
I’m more excited about reducing congestion when more of my neighbors upgrade to 6, so that BSS coloring and other wifi 6/7 features can enable more efficient use of the spectrum. Before wifi 6 most of the upgrades were just increasing data rates, but really lacking in improvements to spectral use efficiency (like the resource unit allocation in OFDMA which splits channels into sub carriers and centrally plans assignment to multiple client devices for simultaneous use which results in much less wasted airtime compared to each device yelling and listening while waiting to see if they can have exclusive access to the whole channel which wastes time) and interference management (like preamble puncturing which allows partial use of a channel when only a portion has interference). In a crowded environment like an apartment building wifi 6 should help a lot in reducing channel utilization.
On a LAN? Pretty easily if you have a gigabit or greater network. Wi-Fi 6 can do close to gigabit but not consistently and needs to be close to an AP, and it’s unlikely a bunch of devices using it at the same time will be able to do maintain that peak. Maybe 6E, although I don’t have any devices myself that support it.
And WAN speeds of gigabit and greater have become more common, too.
And this ignores the improvements in latency with Wi-Fi 7, which is definitely an issue with traditional Wi-Fi.
Also the fact that the faster the wifi, the easier it is to block.
These new standards aren’t really targeting residential use so just people shouldn’t care.
Ok, I know why we changed the version naming scheme: a, b, g, n, ac, ax… It was a nightmare, just awful.
But I’ll bet it does still have a IEEE designation, so how does 6 or 7 map to the previous scheme? Also, what’s new, what are the impressive current speeds and features?
5 is AC, 6 is AX