I know how RAID work and prevent data lost from disks failures. I want to know is possible way/how easy to recover data from unfunctioned remaining RAID disks due to RAID controller failure or whole system failure. Can I even simply attach one of the RAID 1 disk to the desktop system and read as simple as USB disk? I know getting data from the other RAID types won’t be that simple but is there a way without building the whole RAID system again. Thanks.

  • anamethatisnt@lemmy.world
    link
    fedilink
    English
    arrow-up
    10
    ·
    3 months ago
    1. RAID is never a replacement for backups.
    2. Never work directly with a surviving disk, clone it and work with the cloned drive.
    3. Are you sure you can’t rebuild the RAID? That really is the best solution in many cases.
    4. If a RAID failure is within tolerance (1 drive in a RAID5 array) then it should still be operational. Make a backup before rebuilding if you don’t have one already.
    5. If more disks are gone than that then don’t count on recovering all data even with data recovery tools.
  • computergeek125@lemmy.world
    link
    fedilink
    English
    arrow-up
    6
    arrow-down
    1
    ·
    3 months ago

    For recovering hardware RAID: most guaranteed success is going to be a compatible controller with a similar enough firmware version. You might be able to find software that can stitch images back together, but that’s a long shot and requires a ton of disk space (which you might not have if it’s your biggest server)

    I’ve used dozens of LSI-based RAID controllers in Dell servers (of both PERC and LSI name brand) for both work and homelab, and they usually recover the old array to the new controller pretty well, and also generally have a much lower failure rate than the drives themselves (I find myself replacing the cache battery more often than the controller itself)

    Only twice out of the handful of times I went to a RAID controller from a different generation

    • first time from a mobi failed R815 (PERC H700) physically moving the disks to an R820 (PERC H710, might’ve been an H710P) and they were able to foreign import easily
    • Second time on homelab I went from an H710 mini mono to an H730P full size in the same chassis (don’t do that, it was a bad idea), but aside from iDRAC being very pissed off, the card ran for years with the same RAID-1 array imported.

    As others have pointed out, this is where backups come into play. If you have to replace the server with one from a different generation, you run the risk that the drives won’t import. At that point, you’d have to sanitize the super block of the array and re-initialize it as a new array, then restore from backup. Now, the array might be just fine and you never notice a difference (like my users that had to replace a failed R815 with an 820), but the result pattern is really to the extremes of work or fault with no in between.

    Standalone RAID controllers are usually pretty resilient and fail less often than disks, but they are very much NOT infallible as you are correct to assess. The advantage to software systems like mdadm, ZFS, and Ceph is that it removed the precise hardware compatibility requirements, but by no means does it remove the software compatible requirements - you’ll still have to do your research and make sure the new version is compatible with the old format, or make sure it’s the same version.

    All that’s said, I don’t trust embedded motherboard RAIDs to the same degree that I trust standalone controllers. A friend of mine about 8-10 years ago ran a RAID-0 on a laptop that got it’s super block borked when we tried to firmware update the SSDs - stopped detecting the array at all. We did manage to recover data, but it needed multiple times the raw amount of storage to do so.

    • we made byte images of both disks in ddrescue to a server that had enough spare disk space
    • found a software package that could stitch together images with broken super blocks if we knew the order the disks were in (we did), which wrote a new byte images back to the server
    • copied the result again and turned it into a KVM VM to network attach and copy the data off (we could have loop mounted the disk to an SMB share and been done, but it was more fun and rewarding to boot the recovered OS afterwards as kind of a TAKE THAT LENOVO…we were younger)
    • took in total a bit over 3TB to recover the 2x500GB disks to a usable state - and took about a week of combined machine and human time to engineer and cook, during which my friend opted to rebuild his laptop clean after we had images captured - to one disk windows, one disk Linux, not RAID-0 this time :P
  • NeoNachtwaechter@lemmy.world
    link
    fedilink
    English
    arrow-up
    2
    arrow-down
    1
    ·
    3 months ago

    recover data from unfunctioned remaining RAID disks due to RAID controller failure

    In this case, you need a new RAID controller of similar type.

    Can I even simply attach one of the RAID 1 disk to the desktop system

    No. One disk out of a RAID array is different from a normal disk.

    Recovery becomes easy if you do not use a hardware RAID controller, but a ZFS software RAID instead. It does nearly all automatically. But you need to do a little more reading tutorials for the first setup.

  • tburkhol@lemmy.world
    link
    fedilink
    English
    arrow-up
    2
    arrow-down
    3
    ·
    3 months ago

    RAID is more likely to fail than a single disk. You have the chance of single-disk failure, multiplied by the number of disks, plus the chance of controller failure.

    RAID 1 and RAID 5 protect against that by sharing data across multiple disks, so you can re-create a failed drive, but failure of the controller may be unrecoverable, depending on availability of new, exact-same controller. With failure of 1 disk in RAID 1, you should be able to use the array ‘degraded,’ as long as your controller still works. Depending on how the controller works, that disk may or may not be recognizable to another system without the controller.

    RAID 1 disks are not just 2 copies of normal disks. Example: I use software RAID 1, and if I take one of the drives to another system, that system recognizes it as a RAID disk and creates a single-disk, degraded RAID array with it. I can mount the array, but if I try to mount the single disk directly, I get filesystem errors.

    • catloaf@lemm.ee
      link
      fedilink
      English
      arrow-up
      2
      ·
      3 months ago

      RAID is more likely to fail than a single disk. You have the chance of single-disk failure, multiplied by the number of disks, plus the chance of controller failure.

      This is poorly phrased. A raid with a bad disk is not failed, it is degraded. The entire array is not more likely to fail than a single disk.

      Yes, you are more likely to experience a disk failure, but like you said, only because you have more disks in the first place. (However, there is also the phenomenon where, after replacing a failed disk, the additional load during the rebuild might cause a second disk to fail, which is why you should replace failed disks as soon as possible. And have backups.)

    • Big_Boss_77@lemmynsfw.com
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      2
      ·
      3 months ago

      I’ve never been a big fan of RAID for this reason… but I’ve also never had enough mission critical data that I couldn’t just store hard copy backups.

      That being said… let me ask you this:

      Is there a better way than RAID for data preservation/redundancy?