disclaimer: I’m just asking to get understanding of the theory behind network traffic encryption, I know this doesn’t happen irl most likely.
Let’s take https connection for example. I like watching revolutionary things on youtube and do not wish for authorities to know what I am watching, we accept here for the sake of showcase that google won’t sell my watch history if asked (LMAO what am I even saying?).
So if I’m not mistaken since youtube has https implemented, our communication is encrypted, the keys are shared only between me and youtube. But when Youtube shares the key with me/my client the first time, is that also encrypted? Wouldn’t the same question keep getting answered until there is something unencrypted? I know this is a bit too much unlikely, but if ISP automated the process of gathering keys and decrypting web traffic for a certain site with them for all users, would that work for them?
I’m taking https here as an example, while I have the same question for like VPN.
EDIT: Thank you everybody. I am not a member of this community, but every comment was a golden experience to read!
this is very detailed answer thank you. however I face an ambiguity regarding this:
How can this private half be something that I know, Youtube knows but impossible for the snooper to our communication to know??
Your computer generates two keys. One to encrypt a message. One to decrypt the message. The encrypt key is public. The decrypt key is private. Your computer shares the public key with YouTube. The private key is never shared.
YouTube does the same thing for your computer.
Your computer will have YouTube’s public key and your computer’s private key…
Your computer will be able to encrypt messages to send to YouTube that only YouTube will be able to decrypt. Even your computer will not be able to decrypt these messages after it has encrypted them using YouTube’s public key.
Since the decryption keys are never shared they can’t be snooped. That is why it is only possible for an attacker to encrypt new messages but not read any messages from either sender.
Good description of asymmetric cryptography!