The difference is far too small to measure at these scales, the Earth would be falling toward the more massive object faster than the less massive object. Therefore the more massive object hits first.
Only technically. The effect you’re describing is so minute that it’s insignificant.
It’s like pointing out that the Great Pyramids of Giza are so massive that time moves 1 billionth slower for the surrounding objects. It’s neat that the effect is potentially measurable, but noone is going to be adjusting their clocks to account for it
Science is built on technicalities. In an exam, if a student considered the centre of m_1 as the centre of gravity instead of the weighed centre of m_1 and m_2 they would fail. This is no different
The difference is far too small to measure at these scales, the Earth would be falling toward the more massive object faster than the less massive object. Therefore the more massive object hits first.
Only technically. The effect you’re describing is so minute that it’s insignificant.
It’s like pointing out that the Great Pyramids of Giza are so massive that time moves 1 billionth slower for the surrounding objects. It’s neat that the effect is potentially measurable, but noone is going to be adjusting their clocks to account for it
Science is built on technicalities. In an exam, if a student considered the centre of m_1 as the centre of gravity instead of the weighed centre of m_1 and m_2 they would fail. This is no different
It has nothing to do