TL;DW:

  • FSR 3 is frame generation, similar to DLSS 3. It can greatly increase FPS to 2-3x.

  • FSR 3 can run on any GPU, including consoles. They made a point about how it would be dumb to limit it to only the newest generation of cards.

  • Every DX11 & DX12 game can take advantage of this tech via HYPR-RX, which is AMD’s software for boosting frames and decreasing latency.

  • Games will start using it by early fall, public launch will be by Q1 2024

It’s left to be seen how good or noticeable FSR3 will be, but if it actually runs well I think we can expect tons of games (especially on console) to make use of it.

  • echo64@lemmy.world
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    2
    ·
    1 year ago

    For anyone confused about what this is, it’s your tvs motion smoothing feature, but less laggy. It may let 60fps fans on console get their 60fps with only a small drop in resolution or graphical features. But it’s yet to be seen.

    • NewNewAccount@lemmy.world
      link
      fedilink
      English
      arrow-up
      11
      arrow-down
      1
      ·
      1 year ago

      Looks like there are two versions. One is the one built into the game itself, far more advanced than what your tv can do. The other, supporting all dx11 and dx12 games, is like the soap opera effect from your tv.

      • echo64@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        3
        ·
        1 year ago

        I don’t think so, there’s nothing I can see that suggests that. The only real differences are likely to be to do with lag. There’s nothing suggesting a quality difference between if a game has it built in vs you forcing it on a game.

        • simple@lemm.eeOP
          link
          fedilink
          English
          arrow-up
          5
          ·
          edit-2
          1 year ago

          EuroGamer confirmed there is a difference

          The principles are similar to DLSS 3, but the execution is obviously different as unlike the Nvidia solution, there are no AI or bespoke hardware components in the mix. A combination of motion vector input from FSR 2 and optical flow analysis is used.

          AMD wanted us to show us something new and very interesting. Prefaced with the caveat that there will be obvious image quality issues in some scenarios, we saw an early demo of AMD Fluid Motion Frames (AFMF), which is a driver-level frame generation option for all DirectX 11 and DirectX 12 titles. […] This is using optical flow only. No motion vector input from FSR 2 means that the best AFMF can do is interpolate a new frame between two standard rendered frames similar to the way a TV does it - albeit with far less latency. The generated frames will be ‘coarser’ without the motion vector data

          • echo64@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            arrow-down
            1
            ·
            edit-2
            1 year ago

            It’s part of their suite of tools, that includes other things like lag reduction tech. In addition, if your game isn’t dx11 or dx12 then you can still provide it to the user. The generic version only works with dx11/12

            Also just like nvidia, they pay developers to add these things to games

      • Dudewitbow@lemmy.ml
        link
        fedilink
        English
        arrow-up
        16
        arrow-down
        2
        ·
        1 year ago

        AMD has features in yesteryears that it had before Nvidia, its just less people paid attention to them till it became a hot topic after nvidia implemented it.

        An example was anti lag, which AMD and Intel implemented before Nvidia

        https://www.pcgamesn.com/nvidia/geforce-driver-low-latency-integer-scaling

        But people didnt care about it till ULL mode turned into Reflex.

        AMD still holds onto Radeon Chill. Which basically keeps the gpu running slower when idling in game when not a lot is happening on the screen…the end result is lower power consumption when AFK, as well as reletivelly lower fan speeds/better acoustics because the gpu doesnt constantly work as hard.

              • Dudewitbow@lemmy.ml
                link
                fedilink
                English
                arrow-up
                4
                arrow-down
                1
                ·
                edit-2
                1 year ago

                I’m not saying reflex is bad and not used by esports pros. Its just the use of theoretical is not the best choice of word for the situation, as it does make a change, its just much harder to detect, similar to the difference between similar but not the same framerate on latency, or the experience of having refresh rates that are close to each other, especially on the high end as you stop getting into the realm of framerate input properties, but become bottlenecked by acreen characteristics (why oleds are better than traditional ips, but can be beat by high refresh rate ips/tn with BFI)

                Regardless, the point is less on the tech, but the idea that AMD doesnt innovate. It does, but it takes longer for people to see t because they either choose not to use a specific feature, or are completely unaware of it, either because they dont use AMD, or they have a fixed channel on where they get their news.

                Lets not forget over a decade ago, AMDs mantle was what brought Vulkan/DX12 performance to pc.

    • hark@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      1
      ·
      1 year ago

      The hit will be less than the hit of trying to run native 4k.

    • Edgelord_Of_Tomorrow@lemmy.world
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      3
      ·
      1 year ago

      You’re getting downvoted but this will be correct. DLSSFG looks dubious enough on dedicated hardware, doing this on shader cores means it will be competing with the 3D rendering so will need to be extremely lightweight to actually offer any advantage.

      • Dudewitbow@lemmy.ml
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        1 year ago

        I wouldnt say compete as the whole concept of frame generation is that it generates more frames when gpu resouces are idle/low due to another part of the chain is holding back the gpu from generating more frames. Its sorta like how I view hyperthreads on a cpu. They arent a full core, but its a thread that gets utilized when there are poonts in a cpu calculation that leaves a resouce unused (e.g if a core is using the AVX2 accerator to do some math, a hyperthread can for example, use the ALU that might not be in use to do something else because its free.)

        It would only compete if the time it takes to generate one additional frame is longer than the time a gpu is free due to some bottleneck in the chain.

      • echo64@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        arrow-down
        4
        ·
        1 year ago

        You guys are talking about this as if it’s some new super expensive tech. It’s not. The chips they throw inside tvs that are massively cost reduced do a pretty damn good job these days (albit, laggy still) and there is software you can run on your computer that does compute based motion interpolation and it works just fine even on super old gpus with terrible compute.

        It’s really not that expensive.

          • echo64@lemmy.world
            link
            fedilink
            English
            arrow-up
            2
            arrow-down
            2
            ·
            edit-2
            1 year ago

            Yeah, it does, which is something tv tech has to try and derive themselves. Tv tech has to figure that stuff out. It’s actually less complicated in a fun kind of way. But please do continue to explain how it’s more compute heavy

            Also just to be very clear, tv tech also encompasses motion vectors into the interpolation, that’s the whole point. It just has to compute them with frame comparisons. Games have that information encoded into various gbuffers so it’s already available.