Despite sharing >98% genomic similarity, humans are more likely to develop cancers than our closest living ancestors, the nonhuman primates. Here, we unexpectedly discover that, unlike chimpanzee and other primates, a critical embryonic development, immune homeostasis, and general cell-death regulator protein called Fas Ligand (FasL) contains a Pro153-Ser153 evolutionary substitution in humans. The latter renders human FasL preferentially susceptible to cleavage by plasmin, an overly elevated protease in solid tumors. Since FasL-mediated killing of tumor cells by activated T-lymphocytes and chimeric antigen receptor T-cells (CAR-T) is critical for therapeutic efficacy, we find that elevated plasmin levels in certain ovarian tumors interfere with the T-lymphocyte-expressed FasL death signaling. Either targeted inhibition or blocking plasmin accessibility to membrane FasL rescues the FasL cell-death function of activated T-lymphocytes in response to immune-checkpoint receptor targeting antibodies. These findings of evolutionary significance highlight that elevated plasmin in metastatic tumors potentially contributes to differential outcomes of T-cell-based immunotherapies in solid tumors. Fas ligand (FasL) regulates immunotherapeutic cancer-cell death. Here, the authors show a human-specific amino-acid substitution which renders human FasL more susceptible for plasmin cleavage and is relevant for the efficacy of T-cell-based immunotherapies.
Scientists at UC Davis discovered a small genetic difference that could explain why humans are more prone to certain cancers than our primate cousins. The change affects a protein used by immune cells to kill tumors—except in humans, it’s vulnerable to being shut down by an enzyme that tumors release. This flaw may be one reason treatments like CAR-T don’t work as well on solid tumors. The surprising twist? That mutation might have helped our brains grow larger over time. Now, researchers are exploring ways to block the enzyme and give our immune system its power back.